Publicación:
A New Procedure to Understanding Formulas of Generalized Quantum Mean Values for a Composite A + B

dc.contributor.authorNavarro, F.A.R.
dc.date.accessioned2025-08-15T15:25:48Z
dc.date.issued2012
dc.description.abstractHerein is presented a research concerning to the calculation of quantum mean values, for a composite A + B, by using different formulas to expressions in Boltzmann-Gibbs-Shannon's statistics. It is analyzed why matrix formulas with matrices EA and EB, in Hilbert subspaces, produce identical results to full Hilbert space formulas. In accord to former investigations, those matrices are the true density matrices, inside third version of nonextensive statistical mechanics. Those investigations were obtained by calculating the thermodynamical parameters of magnetization and internal energy for magnetic materials. This publication shows that it is not necessary postulate the mean value formulas in Hilbert subspaces, but they can be formally derived from full Hilbert space, taking into consideration the very statistical independence concept. © Electronic Journal of Theoretical Physics. All rights reserved.
dc.identifier.scopus2-s2.0-84856612659
dc.identifier.urihttps://cris.une.edu.pe/handle/001/346
dc.identifier.uuidf13ce3a4-ef22-4192-be7f-60170b30356f
dc.language.isoen
dc.publisherEJTP Publisher
dc.relation.citationissue26
dc.relation.citationvolume9
dc.relation.ispartofElectronic Journal of Theoretical Physics
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.subjectComposites
dc.subjectDensity matrix
dc.subjectMarginal matrix
dc.subjectPartial trace
dc.subjectQuantum statistical mechanics
dc.titleA New Procedure to Understanding Formulas of Generalized Quantum Mean Values for a Composite A + B
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dspace.entity.typePublication
oaire.citation.endPage92
oaire.citation.startPage87

Archivos

Colecciones