Publicación:
Main variables predicting motor skills: analysis with classification trees; [Principales variables que predicen la competencia motora: análisis con árboles de clasificación]

dc.contributor.authorMamani-Ramos, Angel Anibal
dc.contributor.authorDamian-Nuñez, Edgar Froilan
dc.contributor.authorCarpio-Vargas, Edgar Eloy
dc.contributor.authorMujica-Bermúdez, Indalecio
dc.contributor.authorPérez-Reátegui, Carlos Manuel
dc.contributor.authorBotton-Estrada, Luis Martin
dc.contributor.authorQuisocala-Ramos, Jorge Alber
dc.contributor.authorQuispe-Cruz, Henry
dc.contributor.authorCutimbo-Quispe, Carlos Vidal
dc.contributor.authorRodriguez-Mamani, Jhony Ruben
dc.contributor.authorPalomino-Crisóstomo, Rosario Patricia
dc.contributor.authorCutipa-Salluca, Willy Roger
dc.contributor.authorTuero-Chirinos, Kandy Faviola
dc.contributor.authorVillanueva-Alvaro, Naysha Sharon
dc.contributor.authorLava-Gálvez, Jhonny Jesús
dc.date.accessioned2025-08-15T15:25:43Z
dc.date.issued2025
dc.description.abstractIntroduction: Motor skills is a variable that marks the life of the human being. For this reason, predictive studies that explain the behavior of this variable are transcendental. Objective: The purpose of this study was to explore the main variables that predict motor skills according to classification tree analysis. Methods: A total of 291 Peruvian children aged 6 to 10 years (M=8.35; SD=1.29) participated in the study. They underwent a gross motor development test; a mathematics and reading test; a sociodemographic questionnaire; and body mass and height measurements. Results: The prediction results showed an initial model with 22 terminal nodes with 65.52% accuracy, and an optimized model with 10 terminal nodes with 68.34% accuracy. Discussion: This is the first study that applies machine learning by means of the classification tree model based on the CRISP-DM methodology to explore the main variables that predict motor skills in children aged 6 to 10 years. Conclusions: This study confirms that machine learning using classification tree modeling based on CRISP-DM methodology can predict motor skills in children aged 6 to 10 years with an accuracy of 68.34 %, with hours of physical activity practice per day being the most important variable, in addition to hours of screen device use per day and body mass of seven variables. © 2025 Federacion Espanola de Docentes de Educacion Fisica. All rights reserved.
dc.identifier.doi10.47197/retos.v68.113239
dc.identifier.scopus2-s2.0-105005715945
dc.identifier.urihttps://cris.une.edu.pe/handle/001/327
dc.identifier.uuidcc5df1df-597a-4381-974a-18f8fca4b704
dc.language.isoes
dc.publisherFederacion Espanola de Docentes de Educacion Fisica
dc.relation.citationvolume68
dc.relation.ispartofRetos
dc.rightshttp://purl.org/coar/access_right/c_14cb
dc.subjectbody mass
dc.subjectchildren
dc.subjectCRISP-DM
dc.subjectdisplay devices
dc.subjectMotor skills
dc.subjectphysical activity
dc.titleMain variables predicting motor skills: analysis with classification trees; [Principales variables que predicen la competencia motora: análisis con árboles de clasificación]
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dspace.entity.typePublication
oaire.citation.endPage330
oaire.citation.startPage318

Archivos

Colecciones