Publicación: Main variables predicting motor skills: analysis with classification trees; [Principales variables que predicen la competencia motora: análisis con árboles de clasificación]
| dc.contributor.author | Mamani-Ramos, Angel Anibal | |
| dc.contributor.author | Damian-Nuñez, Edgar Froilan | |
| dc.contributor.author | Carpio-Vargas, Edgar Eloy | |
| dc.contributor.author | Mujica-Bermúdez, Indalecio | |
| dc.contributor.author | Pérez-Reátegui, Carlos Manuel | |
| dc.contributor.author | Botton-Estrada, Luis Martin | |
| dc.contributor.author | Quisocala-Ramos, Jorge Alber | |
| dc.contributor.author | Quispe-Cruz, Henry | |
| dc.contributor.author | Cutimbo-Quispe, Carlos Vidal | |
| dc.contributor.author | Rodriguez-Mamani, Jhony Ruben | |
| dc.contributor.author | Palomino-Crisóstomo, Rosario Patricia | |
| dc.contributor.author | Cutipa-Salluca, Willy Roger | |
| dc.contributor.author | Tuero-Chirinos, Kandy Faviola | |
| dc.contributor.author | Villanueva-Alvaro, Naysha Sharon | |
| dc.contributor.author | Lava-Gálvez, Jhonny Jesús | |
| dc.date.accessioned | 2025-08-15T15:25:43Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Introduction: Motor skills is a variable that marks the life of the human being. For this reason, predictive studies that explain the behavior of this variable are transcendental. Objective: The purpose of this study was to explore the main variables that predict motor skills according to classification tree analysis. Methods: A total of 291 Peruvian children aged 6 to 10 years (M=8.35; SD=1.29) participated in the study. They underwent a gross motor development test; a mathematics and reading test; a sociodemographic questionnaire; and body mass and height measurements. Results: The prediction results showed an initial model with 22 terminal nodes with 65.52% accuracy, and an optimized model with 10 terminal nodes with 68.34% accuracy. Discussion: This is the first study that applies machine learning by means of the classification tree model based on the CRISP-DM methodology to explore the main variables that predict motor skills in children aged 6 to 10 years. Conclusions: This study confirms that machine learning using classification tree modeling based on CRISP-DM methodology can predict motor skills in children aged 6 to 10 years with an accuracy of 68.34 %, with hours of physical activity practice per day being the most important variable, in addition to hours of screen device use per day and body mass of seven variables. © 2025 Federacion Espanola de Docentes de Educacion Fisica. All rights reserved. | |
| dc.identifier.doi | 10.47197/retos.v68.113239 | |
| dc.identifier.scopus | 2-s2.0-105005715945 | |
| dc.identifier.uri | https://cris.une.edu.pe/handle/001/327 | |
| dc.identifier.uuid | cc5df1df-597a-4381-974a-18f8fca4b704 | |
| dc.language.iso | es | |
| dc.publisher | Federacion Espanola de Docentes de Educacion Fisica | |
| dc.relation.citationvolume | 68 | |
| dc.relation.ispartof | Retos | |
| dc.rights | http://purl.org/coar/access_right/c_14cb | |
| dc.subject | body mass | |
| dc.subject | children | |
| dc.subject | CRISP-DM | |
| dc.subject | display devices | |
| dc.subject | Motor skills | |
| dc.subject | physical activity | |
| dc.title | Main variables predicting motor skills: analysis with classification trees; [Principales variables que predicen la competencia motora: análisis con árboles de clasificación] | |
| dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dspace.entity.type | Publication | |
| oaire.citation.endPage | 330 | |
| oaire.citation.startPage | 318 |