Publicación:
A Novel Approach to Predict the Early Childhood Special Education Learning Skills of Autistic Children Using Ensemble Machine Learning

dc.contributor.authorOcaña-Fernández, Yolvi J.
dc.contributor.authorGómez-Gonzales, Walter
dc.contributor.authorValenzuela Fernández, Luis Alex
dc.contributor.authorVásquez Ramos, Segundo Pio
dc.contributor.authorDueñas Zúñiga, Huguette Fortunata
dc.contributor.authorHuaman Fernandez, Jackeline Roxana
dc.contributor.authorAmapanqui Broncano, Marco Antonio
dc.date.accessioned2025-08-15T15:27:17Z
dc.date.issued2023
dc.description.abstractChildren with autism spectrum disorder will eventually receive more extensive educational experiences, diverse understanding styles, any distinctive instructional techniques to help all infants achieve. Data mining categorization algorithms in the Weka tool are used to anticipate and forecast infants' performance with Autism Spectrum Disorder (ASD). As a decision-making tool for improving the performance of autistic youngsters, data mining is widely acknowledged. Support Vector Machines (SVMs), Logistic Regression (LR), and Naive Bayes (NB) are some of the techniques that can be used for categorization. The categorization model's outcomes include information on the model's accuracy, error rate, confusion matrices, classifier effectiveness, and execution time. © 2023, Innovative Information Science and Technology Research Group. All rights reserved.
dc.identifier.doi10.58346/JOWUA.2023.I2.005
dc.identifier.scopus2-s2.0-85165723678
dc.identifier.urihttps://cris.une.edu.pe/handle/001/521
dc.identifier.uuid6c0a32f8-7f70-41b2-8aef-6a0712160138
dc.language.isoen
dc.publisherInnovative Information Science and Technology Research Group
dc.relation.citationissue2
dc.relation.citationvolume14
dc.relation.ispartofJournal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectASD
dc.subjectDiagnosis
dc.subjectLearning Disabilities
dc.subjectLogistic Regression (LR) and SVM
dc.subjectMultinomial NB
dc.titleA Novel Approach to Predict the Early Childhood Special Education Learning Skills of Autistic Children Using Ensemble Machine Learning
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dspace.entity.typePublication
oaire.citation.endPage65
oaire.citation.startPage59

Archivos

Colecciones